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Chapter 27 – SINGLE PARTICLE FORM FACTORS 

 

 

1. DEFINITION OF SCATTERING FACTORS 

 

Consider a scattering object consisting of n scatterers occupying a volume VP. The 

scattering density and its Fourier transform are defined as:  
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Note that these quantities vary randomly with position r


 and scattering vector Q


. The 

average density being constant (<n(r)> = n  = n/Vp), a fluctuating density and its Fourier 

transform are defined as: 
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Here )Q(


  is the Dirac Delta function which does not contribute except at 0Q


  (along 

the very forward scattering direction) which is experimentally irrelevant. The static form 

factor for the scattering “particles” is defined as the density-density correlation function 

summed up (or integrated) over the particle volume: 
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The form factor of various shape objects are worked out next (Guinier-Fournet, 1955; 

Glatter-Kratky, 1982; Higgins-Benoit, 1994; Hammouda, 1995; Roe, 2000).  

 

 

2. FORM FACTOR FOR A UNIFORM SPHERE 

 

Consider a sphere of radius R and uniform density (this could be a spherical domain in a 

microphase separated block copolymer or a latex particle in a colloidal suspension). The 

single particle form factor P(Q) involves integrations over the volume VP of the sphere 

(in spherical coordinates): 
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Since the scattering elements are not correlated, the average of the product <n(r)n(r')> is 

equal to the product of the averages <n(r)><n(r')> and therefore: 
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Here the amplitude of the form factor F(Q) has been defined as: 
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For uniform density, the average over configurations <n(r)> becomes trivial: 
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Therefore:  
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Here the spherical Bessel function j1(x) has been defined as:  
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The spherical Bessel function j B1B(x) is related to the cylindrical Bessel function J B3/2B(x) as 

shown. It is also related to j B0B(x) as follows: 
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The form factor for the sphere is therefore: 
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Note the following normalization 1)0Q(P   and recall the calculation of the radius of 

gyration squared for a uniform density sphere of radius R as 53RR 22

g  . 

 

The low-Q Guinier expansion follows:  
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Figure 1: Plot of Log[P(Q)] vs QR for a uniform sphere showing many order oscillations. 

 

 

3. SPHERICAL CORE-SHELL 
 

Consider a sphere with an inner core and an outer shell. Three regions can be defined 

corresponding to the inner core, the outer shell and the solvent. Three cases are 

considered where (1) the shell is visible (with matched core and solvent scattering length 
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densities), (2) the core and shell scattering length densities are matched and (3) the core is 

visible (with matched shell and solvent scattering length densities).  

 

Note that the “correlation hole” peak is enhanced in case 1 for which the shell is visible 

whereas the core is not (i.e., it is matched to the solvent). Polydispersity (/R = 0.3) has 

been included in order to damp higher order oscillations. This level of polydispersity was 

enough to damp oscillations for case 3 but not enough for case 2. 
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Figure 2: Scattering factors for a core-shell sphere of inner radius R = 20 Å and radial 

shell thickness T = 20 Å. Case 1 corresponds to the core scattering length density 

matched to the solvent. Case 2 corresponds to matched scattering length densities for the 

core and shell. Case 3 corresponds to the shell scattering length density matched to the 

solvent. The vertical scale is arbitrary and a constant background value of 0.001 has been 

added.  

 

 

4. FORM FACTORS FOR OTHER SPHEROID SHAPES 

 

Following the same procedure, the form factor for a spherical shell between radii R1 and 

R2 (and hollow for r<R1) can be calculated as follows: 
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For an ellipsoid of half axes a, b, c oriented so that its axes make angles , ,  with the 

Q


 direction, an effective radius Re is defined as:  
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The form factor amplitude is the same as the one for a sphere of radius Re:  
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The form factor (for a randomly oriented sample) is an average over all possible 

orientations of the ellipsoid: 
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 = cos() and  is the angle between the major axis of the ellipsoid and the Q


 direction. 

It is straightforward to extend these results to an ellipsoidal shell. 

 

 

5. FORM FACTORS FOR CYLINDRICAL SHAPES 

 

The form factor amplitude F(Q) for a uniform cylinder (rod) of radius R and length L 

oriented at an angle  from the Q


 direction is the product of a longitudinal (z along the 

rod) and a transverse (  perpendicular to the rod) contributions in cylindrical 

coordinates: 
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Here  = cos() and  is the inclination angle. The following definition of the cylindrical 

Bessel functions are used (Abromowitz-Stegun, 1972): 
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One obtains: 

 

  

R

0

2

02
)1Q(Jd

R

2
),Q(F .    (20) 

 

An integration variable change to t = /R is made and the following integral is used: 
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The following result is obtained: 
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The final result for the form factor amplitude for an oriented rod is: 
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The form factor for a randomly oriented rod is therefore given by the following 

orientation average: 
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In order to model the scattering from very dilute solutions of rods, the last integral (over 

) is performed numerically.  
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Figure 3: Geometry of the uniform rod. 

 

-7

-6

-5

-4

-3

-2

-1

0

1

0 1 2 3 4 5 6 7 8

 Form Factors for a Rod 

 [2J
1
(X)/X]

2
 

[sin(X)/X]
2
 

L
o

g
 S

c
a

le
  

X 

X = 3.78

X = 7.02 

 
 

Figure 4: Plots of the two functions [2J
1
(X)/X]

2
 and [sin(X)/X]

2
 that give the variations of 

the form factor perpendicular and parallel to the rod axis respectively.  
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Figure 5: Form factor P(Q) for a cylinder with radius R = 20 Å and length L = 400 Å.  

 

Note that the result for a rod of length L applies also to a disk of thickness L.  

 

For a disk of radius R and negligible thickness, the 0L   limit in the general result is 

taken so that: 
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Averaging over orientations is performed as follows: 

 

 
 



















1

1

2

2

2

1

R1Q

)R1Q(J2
d

2

1
)Q(P     (26) 

   



 9 

  









QR

)QR2(J
1

)QR(

2 1

2
. 

 

To obtain the form factor for an infinitely thin rod of length L, we take the 0R   limit 

instead, and obtain: 
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Integrate by part once to obtain: 
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Si(x) is the sine integral function defined as: 
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6. FORM FACTOR FOR A PARALLELEPIPED 

 

Consider a uniform density rectangular parallelepiped of sides a, b, c. In Cartesian 

coordinates, the form factor amplitude can be split into the product of three parts that 

depend on the three coordinates respectively: 
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The form factor is, here also, an average over orientations: 
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= cos() and  is the orientation angle between Q


 and one of the symmetry axes of the 

parallelepiped. 

 

 

7. TWISTED RIBBON FORM FACTOR 

 

The parametrization of the twisted ribbon was described in an earlier section when 

calculating the radius of gyration. Consider a helically twisted ribbon aligned along the 

vertical z axis with a helical radius R, height L, width W and ribbon thickness T. Define 

the helix pitch p and the azimuthal angle  in the horizontal plane. Define also the polar 

coordinate variable in the horizontal plane  and the vertical variable z. The parametric 

position along the ribbon is given by: 
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The single twisted ribbon form factor amplitude is given by:  
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All three integrations can be performed numerically using the following limits: -L/p    

  L/p, –W/2   z   W/2 and R–T/2      R+T/2.  

 

Here also, the form factor is given by an average over orientations: 
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= cos() and  is the orientation angle between Q


 and the vertical axis of the ribbon.  

 

 

8. PAIR CORRELATION FUNCTIONS 

 

The form factor P(Q) is the Fourier transform of the probability distribution function 

)r(P


: 
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Given an infinitesimal scattering volume chosen randomly inside the considered 

"particle", )r(P


 represents the probability of finding another scatterer within the particle 

a distance r


 away.  

 
Figure 7: Density-density correlation function 

 

Usually, a one-dimensional probability distribution p(r) (also referred to as "distance 

distribution function") is defined instead: 
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p(r) is available for some of the common shape objects. For a sphere of radius R: 
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Note the other definition   )r(Rr3)r(p
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Figure 8: Radial pair correlation function for uniform sphere 

 

For a disk of radius R, the distance distribution function is given by: 
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For an infinitely thin rod of length L, the integration is performed from 0 to L and the 

normalization constant is 1/L so that: 
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Note that the probability distribution function P( r


) is better known when defined for the 

"inter-particle" structure factor SI(Q) and is often referred to as pair correlation function 

g( r
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) (where V is the sample volume): 
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Here the following constant term: 
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has been subtracted from )r(g


. This term has no contribution except in the 

(experimentally irrelevant) forward scattering direction (for which 0Q


 ).  
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QUESTIONS 

 

1. What is the relationship between the form factor P(Q) and its amplitude F(Q) for the 

case of a uniform sphere? How about the case of a Gaussian polymer coil?  

2. What is the form factor for a uniform sphere of radius R? 

3. What is the form factor for a disk of radius R with its axis of rotation oriented parallel 

to the Q


 direction? 

4. What is the form factor for a disklike lamella of thickness L with its normal axis 

oriented parallel to the Q


 direction? 

5. What is the form factor for a cylinder of radius R and length L oriented perpendicular 

to the Q


 direction? 

6. How is the averaging over random orientations performed for the calculation of the 

form factor? 

7. Write down the radial pair correlation function (r) for a uniform sphere of radius R. 

(r) is defined through the following 1D Fourier transform: 

)r(
Qr

)Qrsin(
r4dr

V

1
)Q(P

R

0

2

P

  .  

8. What are the various parts that are used to calculate the SANS macroscopic scattering 

cross section for a solution of compact scatterers?  

9. What is the Porod exponent for an infinitely thin rod of length L? 
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10. Define the spherical Bessel function of first order j1(x). What is J1(x)? 

 

ANSWERS 

 

1. For a uniform sphere P(Q) = |F(Q)|2. For a Gaussian coil, there is no uniform density 

and the form factor amplitude cannot be defined.  

2. The form factor for a uniform sphere is given as  21 QR)QR(j3)Q(P   where j1(QR) 

is the spherical Bessel function.  

3. The form factor for a disk of radius R with its axis of rotation oriented parallel to the 

Q


 direction is given by  2QR)QRsin()Q(P  .  

4. The form factor for a disklike lamella of thickness L with its normal axis oriented 

parallel to the Q


 direction is given by  21 QLQL(J2)Q(P   where J1(QL) is the 

cylindrical Bessel function.  

5. The form factor for a cylinder of radius R and length L oriented perpendicular to the Q


 

direction is given by  21 QR)QR(J2)Q(P  .  

6. The form factor for a randomly oriented object with its symmetry axis along the z-

direction is calculated as  




1

1

),Q(Pd21)Q(P  where P(Q,) is the form factor for the 

object oriented at an angle  from the Q


 direction ( = cos().  

7. The radial pair correlation function for a uniform sphere of radius R is given as 
























3

R

r

16

1

R

r

4

3
1)r( . Note that (r=2R) = 0.  

8. The SANS macroscopic scattering cross section for a solution of compact scatterers is 

the product of (1) the contrast factor, (2) the number density of scatterers, (3) the 

scatterer’s volume squared, (4) the form factor and (4) the structure factor.  

9. Since P(Q) for an infinitely thin rod of length L is given by 


 



















1

1

2

2

2

1

R1Q

)R1Q(J2
d

2

1
)Q(P , one would think that the Porod law gives 

2Q1)Q(P  . However after orientational averaging, one obtains the following 

2

2

)2/QL(

)2/QL(sin
)QL(Si

QL

2
)Q(P 








 , so that Q1)Q(P  . The Porod exponent for an 

infinitely thin rod is 1.  

10. The spherical Bessel function of first order is given by 
x

)xcos(

x

)xsin(
)x(j

21  . J1(x) 

is the cylindrical Bessel function.  

 


